

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Radioactivity contents in dicalcium phosphate and the potential radiological risk to human populations

N. Casacuberta^{a,*}, P. Masqué^a, J. Garcia-Orellana^a, J.M. Bruach^a, M. Anguita^b, J. Gasa^b, M. Villa^{c,a}, S. Hurtado^c, R. Garcia-Tenorio^c

^a Institut de Ciència i Tecnologia Ambientals – Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

^b Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

^c Servicio de Radioisótopos, CITIUS, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

ARTICLE INFO

Article history: Received 17 February 2009 Received in revised form 24 April 2009 Accepted 8 May 2009 Available online 15 May 2009

Keywords: Dicalcium phosphate NORM Phosphate industry Radiological risk

ABSTRACT

Potentially harmful phosphate-based products derived from the wet acid digestion of phosphate rock represent one of the most serious problems facing the phosphate industry. This is particularly true for dicalcium phosphate (DCP), a food additive produced from either sulphuric acid or hydrochloric acid digestion of raw rock material. This study determined the natural occurring radionuclide concentrations of 12 DCP samples and 4 tricalcium phosphate (TCP) samples used for animal and human consumption, respectively. Metal concentrations (Al, Fe, Zn, Cd, Cr, As, Hg, Pb and Mg) were also determined. Samples were grouped into three different clusters (A, B, C) based on their radionuclide content. Whereas group A is characterized by high activities of 238 U, 234 U (~10³ Bq kg⁻¹), 210 Pb (2 × 10³ Bq kg⁻¹) and 210 Po $(\sim 800 \text{ Bg kg}^{-1})$; group B presents high activities of 238 U, 234 U and 230 Th $(\sim 10^3 \text{ Bg kg}^{-1})$. Group C was characterized by very low activities of all radionuclides (<50 Bq kg⁻¹). Differences between the two groups of DCP samples for animal consumption (groups A and B) were related to the wet acid digestion method used, with group A samples produced from hydrochloric acid digestion, and group B samples produced using sulphuric acid. Group C includes more purified samples required for human consumption. High radionuclide concentrations in some DCP samples (reaching 2×10^3 and 10^3 Bg kg⁻¹ of ²¹⁰Pb and ²¹⁰Po, respectively) may be of concern due to direct or indirect radiological exposure via ingestion. Our experimental results based on ²¹⁰Pb and ²¹⁰Po within poultry consumed by humans, suggest that the maximum radiological doses are $11 \pm 2 \,\mu$ Sv y⁻¹. While these results suggest that human health risks are small, additional testing should be conducted.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Phosphorus is an essential element for all living cells and a key element in the transport of cellular energy. During the last several decades, inorganic phosphate rock of both igneous and sedimentary origin has been used as a source of phosphorus in the production of fertilizers and feed supplements for farm and domestic animals [1]. However, these compounds may be enriched in significant quantities of naturally occurring radionuclides [2], due to the similar ionic radii of uranium (U⁴⁺) and calcium (Ca²⁺), e.g. U substitutes for Ca in the apatite lattice of sedimentary phosphate rocks [3]. The range of ²³⁸U and ²²⁶Ra concentrations in marketable phosphate rocks is broad (about 10–5000 Bq kg⁻¹), mostly due to its geological composition. For example, sedimentary phosphate ores such as those found in Tanzania, Florida (USA) and Morocco tend to have high

E-mail address: Nuria.Casacuberta@uab.cat (N. Casacuberta).

 238 U (>10³ Bq kg⁻¹) and low 232 Th (<100 Bq kg⁻¹) concentrations, magmatic ores such as apatite from Kola (Russia) or Brazil, contain appreciable amounts of 232 Th (up to 400 Bq kg⁻¹) relative to 238 U (<400 Bq kg⁻¹) [2,4–6].

Phosphate-based products such as dicalcium phosphate (DCP), monocalcium phosphate (MCP) and tricalcium phosphate (TCP), each containing ~20% phosphorus, are important in modern livestock production. These compounds are mostly used for cattle, pig and poultry diets [7–9] as well as a human diet supplement. The most common production process is based on wet acid digestion of the phosphate rock with sulphuric acid [6,10,11], although hydrochloric acid is also used [12]. Both acids lead to the enhancement of several radionuclides within the final product (e.g. DCP) and waste/by-products that are subsequently considered to be Naturally Occurring Radioactive Materials (NORM).

The main concern regarding these NORM materials, and particularly DCP, MCP and TCP, is that they may directly enter into the food chain. Hence they pose a potential radiological risk to animal and human populations. The lack of legal limits

^{*} Corresponding author. Tel.: +34 935811191.

^{0304-3894/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2009.05.037

regarding the radionuclide content of NORM materials may lead to misconceptions regarding radiological consequences to animal and human populations.

The goals of this research are to: (i) evaluate the concentrations of natural radionuclides in a representative number of DCP and TCP samples commercialized in Spain in 2006; (ii) understand the origins of the radionuclide concentration patterns, as well as the metal concentrations, observed within sample groups; and (iii) estimate the dose to consumers via the ingestion of chicken meat fed with food containing certain amounts of DCP and TCP, with particular emphasis on ²¹⁰Pb and ²¹⁰Po because of their potentially high contribution to internal radiological doses through ingestion.

2. Materials and methods

2.1. Sample description

A total of 16 DCP samples produced for commercial use in Catalonia (Spain) during the first half of 2006 were provided by the Agència Catalana de Seguretat Alimentària of the Departament de Salut de la Generalitat de Catalunya for analysis. Twelve of these samples were DCP used as livestock feed supplement and duplicates of each sample type were analyzed. Four other samples consisted of TCP used in human dietary supplements (Table 1). No details regarding initial rock type or subsequent industrial processing were provided.

2.2. Gamma emitters

Gamma emitters such as ²³⁴Th, ²²⁶Ra, ²³¹Pa, and ²²⁸Th, and ⁴⁰K were quantified by gamma-ray spectrometry. Between 500 and 1000 g of dry homogenized sample were placed into 500 cm³ Marinelli Jars. The jars were then sealed and stored for 3 weeks prior to quantification in order to ensure secular equilibrium between

 226 Ra and its short-lived daughters. Samples were measured for $(80-150) \times 10^3$ s using a coaxial HPGe detector (GMX, EG&G Ortec) equipped with an iron, copper and lead shielding. The detection system basically consists of a high pure germanium crystal in a cryostat. The crystal is inversely polarized and the pulse is electronically stored to the multichannel analyzer (MCA). The MCA consists of 8192 channels set to allow the determination of emission lines ranging from 40 to 3000 keV. The efficiency calibration of the detector was confirmed using the SRM-4276 solution standard supplied by the National Institute of Standards and Technology, which consists of a mixture of 125 Sb (in equilibrium with 125m Te), 154 Eu and 155 Eu. Resolution at 1.33 MeV of 60 Co is 1.9 keV, 20% relative efficiency and Genie 2000 as the software.

Thorium-234 activities were determined through the emission line at 63.29 keV. The ²²⁶Ra activities were determined from the three photopeaks of its daughter nuclides in secular equilibrium: ²¹⁴Pb at 295 keV and 352 keV, and ²¹⁴Bi at 609 keV. Thorium-228 concentrations were determined via ²¹²Bi decay, using its emission line of 727.2 keV. The activity of ²²⁸Ra was determined via ²²⁸Ac decay at 911 keV. The ²³⁵U gamma emitter daughter, ²³¹Pa, was determined at 330.1 keV. Finally, ⁴⁰K was determined via its emission line at 1461 keV.

2.3. Alpha emitters

Polonium-210, uranium and thorium isotopes were quantified by alpha spectrometry after radiochemical purification. For the quantification of ²¹⁰Po activity, between 150 and 250 mg of DCP or TCP was spiked with a known amount of ²⁰⁹Po as internal tracer, and microwave digested using a mixture of HCl, HNO₃ and HF [13]. Boric acid (H₃BO₃) was added in order to remove borofluorides. After digestion and evaporation, the residue was dissolved in 100 mL 1 M HCl. After the addition of ascorbic acid to reduce Fe³⁺,

Table 1

Description of the analyzed samples of dicalcium phosphate (DCP) and tricalcium phosphate (TCP).

Sample code	Batch/lot	Collection date	Additional information				
			Raw material	Source region	Phosphoric acid production plac		
DCP for animal con	sumption						
1	890R	4-Apr-06	Phosphate rock	Morocco	nd		
	890G	4-Apr-06	Phosphate rock	Morocco	nd		
2	883R	4-Apr-06	Phosphate rock	Morocco	nd		
	883G	4-Apr-06	Phosphate rock	Morocco	nd		
3	899B	4-Apr-06	Phosphate rock	Morocco	nd		
	883B	11-Apr-06	Phosphate rock	Morocco	nd		
4	899R	11-Apr-06	Phosphate rock	Morocco	nd		
	899G	4-Apr-06	Phosphate rock	Morocco	nd		
5	896B	7-Apr-06	Phosphate rock	Morocco (Bu Craa)	Huelva (Spain)		
	897G	7-Apr-06	Phosphate rock	Morocco (Bu Craa)	Huelva (Spain)		
6	896G	7-Apr-06	Phosphate rock	Morocco (Bu Craa)	Huelva (Spain)		
	896R	7-Apr-06	Phosphate rock	Morocco (Bu Craa)	Huelva (Spain)		
7	897B	7-Apr-06	Phosphate rock	Negev's Dessert	Israel		
	897R	7-Apr-06	Phosphate rock	Negev's Dessert	Israel		
8	891B	11-Apr-06	Phosphate rock	Negev's Dessert	Israel		
	891G	11-Apr-06	Phosphate rock	Negev's Dessert	Israel		
9	900B	11-Apr-06	Phosphate rock	Morocco	nd		
	900G	11-Apr-06	Phosphate rock	Morocco	nd		
10	891R	11-Apr-06	nd	nd	nd		
	893B	11-Apr-06	nd	nd	nd		
11	895G	20-Apr-06	nd	nd	Liban		
	895B	11-Apr-06	nd	nd	Liban		
12	893R	20-Apr-06	nd	nd	Liban		
12	893G	11-Apr-06	nd	nd	Liban		
ICP for human con	sumption						
13	sha-1	1-May-06	Tricalcium phosphate	nd	nd		
14	sha-2	1-May-06	Tricalcium phosphate	nd	nd		
15	sha-3	1-May-06	Tricalcium phosphate	nd	nd		
16	sha-4	1-May-06	Tricalcium phosphate	nd	nd		

815

Radionuclide concentrations of the ²³⁸U decay series in DCP and TCP samples for animal and human consumption commercialized in Catalonia in 2006.

Sample code	238 U (Bq kg $^{-1}$)	²³⁴ Th (Bq kg ⁻¹)	234 U (Bq kg $^{-1}$)	²³⁰ Th (Bq kg ⁻¹)	226 Ra (Bq kg $^{-1}$)	²¹⁰ Pb (Bq kg ⁻¹)	210 Po (Bq kg $^{-1}$)
DCP for animal o	consumption						
1	1131 ± 18	845 ± 10	899 ± 15	41 ± 3	96.9 ± 0.7	2183 ± 112	570 ± 29
2	1246 ± 20	978 ± 40	982 ± 16	38.7 ± 0.9	86 ± 8	2089 ± 117	684 ± 45
3	1257 ± 20	1010 ± 92	1032 ± 17	44 ± 1	88 ± 5	2207 ± 99	1336 ± 165
4	1173 ± 19	935 ± 33	929 ± 15	92 ± 3	131 ± 3	2260 ± 93	1043 ± 58
5	1432 ± 23	1003 ± 26	1418 ± 23	2007 ± 42	15.8 ± 0.4	41 ± 5	17 ± 7
6	1450 ± 16	1142 ± 27	1436 ± 16	2286 ± 47	16.7 ± 0.3	34 ± 10	22 ± 8
7	1341 ± 20	866 ± 9	1369 ± 21	1453 ± 30	8.5 ± 0.3	8.8 ± 0.9	12 ± 6
8	3128 ± 31	2236 ± 21	3144 ± 31	4512 ± 109	6.3 ± 0.4	8 ± 6	10 ± 5
9	999 ± 16	831 ± 8	784 ± 13	34 ± 3	65 ± 3	1851 ± 97	786 ± 55
10	1022 ± 17	855 ± 22	808 ± 13	40 ± 1	111 ± 3	2060 ± 66	692 ± 67
11	1126 ± 9	909 ± 13	1106 ± 0	206 ± 9	14 ± 1	36 ± 3	30 ± 4
12	1046 ± 17	697 ± 13	943 ± 15	63 ± 2	18 ± 3	204 ± 82	16 ± 37
TCP for human c	consumption						
13	24.7 ± 0.7	11 ± 1	22 ± 1	10.3 ± 0.3	7.3 ± 0.3	2.2 ± 0.3	4.3 ± 0.6
14	15.0 ± 0.4	<6.4	14.9 ± 0.4	45 ± 1	16.2 ± 0.6	7.7 ± 0.5	7.0 ± 0.7
15	5.8 ± 0.3	<5.4	5.3 ± 0.3	16 ± 1	2.3 ± 0.4	7.3 ± 0.5	9.9 ± 1.2
16	2.0 ± 0.2	<5.6	2.0 ± 0.2	53 ± 6	<1.4	1.8 ± 0.5	5.3 ± 0.8

both ²⁰⁹Po and ²¹⁰Po were plated onto a silver disc. Plating time was approximately 6–7 h at 70 °C with constant stirring. Lead-210 was determined through the measurement of its granddaughter ²¹⁰Po. In this case, samples were digested and quantified 1 year after sample collection to ensure the radioactive equilibrium between ²¹⁰Pb and ²¹⁰Po in the analyzed samples. Appropriate decay and in-growth corrections were applied to determine concentrations at sampling time.

A modified version of the method described in Martinez-Aguirre and García-León [14] was used for the quantification of uranium and thorium isotopes. Approximately 1 g of dried sample was spiked with ²²⁹Th and ²³²U and digested with HNO₃. The final residue was redissolved in 8 M HNO₃. The aqueous phase (8 M HNO₃) was mixed with tributylphosphate (TBP), shaken for 5 min, and decanted, leaving the actinides remaining in the organic phase. Separation of U and Th was accomplished by using repeated extractions of a mixture of 15 mL xylene, 1.5 M HCl and H₂O. While Th was extracted with the addition of HCl 1.5 M; U was preferentially removed into the aqueous phase. The solution containing thorium was evaporated to dryness, redissolved in 10 mL 8N HNO₃ and further purified using BIO-RAD AG 1-X8 (100-200 mesh) anion exchange resin. The U and Th solutions were subsequently evaporated near dryness and electroplated independently onto 2.2-cm diameter stainless steel planchets. Polonium-210, uranium and thorium activities were determined using PIPS detectors in a CANBERRA alpha-analyst system, model PD-450.18AM. Backgrounds in the corresponding windows were: $0.0011\pm0.0010\,\text{cpm}$ for 210 Po; 0.0006 \pm 0.0002 cpm for 238 U; 0.0004 \pm 0.0001 cpm for ²³⁵U; 0.0004 ± 0.0001 cpm for ²³⁴U; 0.00035 ± 0.00004 cpm for 232 Th and 0.0005 \pm 0.0002 cpm for the 230 Th window.

2.4. Metals

Samples were digested with diluted HNO₃ (2%). The solution was filtered and the non-soluble fraction discarded. Concentrations of Fe, Al, Mg, Cd, Hg, Pb, As, Cr and Zn were determined using an inductively coupled plasma mass spectrometry (ICP-MS) Agilent, model 7500 ce.

2.5. Statistical data analysis

A hierarchical cluster analysis of the data was conducted using SPSSTM version 12.0 for Windows. This procedure allows the identification of relatively homogeneous groups of cases (or variables) based on selected characteristics, using an algorithm that starts

with each case (or variable) in a separate cluster. Dendrograms were used to assess the cohesiveness of the clusters formed and provide information about the appropriate number of clusters.

3. Results

3.1. DCP samples for animal consumption – samples 1–12

Radionuclide activities (238 U, 234 Th, 234 U, 230 Th, 226 Ra, 210 Pb and 210 Po) are listed in Table 2. In general, uranium isotopes and 234 Th were present in similar activities in all the DCP samples, with the exception of sample 8 which contained activities almost double than the other samples (average of 1–12: 1363 ± 576 Bq kg⁻¹ of 238 U, 1237 ± 642 Bq kg⁻¹ of 234 U, and 1025 ± 397 Bq kg⁻¹ of 234 Th). 230 Th, 226 Ra, 210 Pb and 210 Po specific activities were significantly more heterogeneous.

Thorium-232 had an average specific activity of 22 ± 34 Bq kg⁻¹ with activities of 228 Th and 228 Ra close to detection limits, below 10 Bq kg⁻¹ of 228 Th and ~ 2 Bq kg⁻¹ of 228 Ra. Potassium-40 generally ranged from 10 to 30 Bq kg⁻¹ of 40 K with a high value of 60 Bq kg⁻¹ in sample 8 (Table 3).

3.2. TCP samples for human consumption – samples 13–16

TCP samples were characterized by significantly different radionuclides activities relative to the DCP samples (Table 2). TCP samples contained less than 25 Bq kg^{-1} in all cases, with mean activities of 238 U and 234 U of 12 ± 10 and $11 \pm 9 \text{ Bq kg}^{-1}$, respectively. Thorium-230 activities ranged from 10.3 ± 0.3 to $53 \pm 6 \text{ Bq kg}^{-1}$ while 226 Ra activities were all below 25 Bq kg^{-1} . Concentrations of 210 Pb and 210 Po did not exceed 10 Bq kg^{-1} . The radioactive daughters of 232 Th (less than $3.2 \pm 0.2 \text{ Bq kg}^{-1}$) and 235 U (average of $0.5 \pm 0.4 \text{ Bq kg}^{-1}$), 228 Th, 228 Ra and 231 Pa, were below detection.

3.3. Metal concentrations

Concentrations of Mg, Al, Fe, Zn, Cr, As, Cd, Hg and Pb in DCP and TCP samples are shown in Table 4. Magnesium, aluminium, and iron were the most abundant, with mean values of 2.4 ± 2.9 , 1.0 ± 1.1 , and $1.1 \pm 0.8 \text{ mg g}^{-1}$. Zinc had concentrations of only $0.2 \pm 0.3 \text{ mg g}^{-1}$, while mean values of Cr, As, Cd and Hg were 82 ± 59 , 1.6 ± 1.3 , 2.3 ± 2.1 and $<0.025 \,\mu g g^{-1}$, respectively. All Hg concentrations were below the detection limit ($0.025 \,\mu g g^{-1}$) except for sample 10, with $0.045 \,\mu g g^{-1}$.

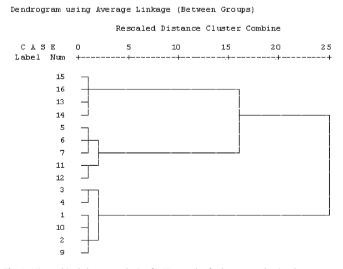
Radionuclide concentrations of the ²³²Th and ²³⁵U decay series and ⁴⁰K in DCP and TCP samples for animal and human consumption commercialized in Catalonia (Spain) in 2006.

Sample code	²³² Th (Bq kg ⁻¹)	228 Th (Bq kg $^{-1}$)	²²⁸ Ra (Bq kg ⁻¹)	²³⁵ U (Bq kg ⁻¹)	²³¹ Pa (Bq kg ⁻¹)	40 K (Bq kg ⁻¹)
DCP for animal co	onsumption					
1	1.5 ± 0.5	<4.2	1.9 ± 0.4	47 ± 1	<28	<6.1
2	1.1 ± 0.1	<4.1	2.0 ± 0.3	53 ± 1	<29	<5.9
3	0.7 ± 0.2	<4.3	<1.4	51 ± 1	<28	<5.4
4	2.5 ± 0.4	<4.5	2.0 ± 0.8	81 ± 3	16 ± 2	<6.5
5	53 ± 3	7.8 ± 0.2	<1.4	72 ± 5	105 ± 3	26.7 ± 0.4
6	27 ± 2	8.2 ± 1.3	<1.1	79 ± 3	132 ± 1	23 ± 1
7	111 ± 4	2.4 ± 0.7	<1.2	69 ± 5	105 ± 6	23 ± 2
8	27 ± 6	<2.8	<1.6	168 ± 6	196 ± 25	58 ± 1
9	0.9 ± 0.5	<3.9	<1.3	41 ± 1	<26	<5.7
10	3.6 ± 0.3	<3.8	1.9 ± 0.1	45 ± 1	<26	<5.7
11	9 ± 2	3.2 ± 0.7	2.4 ± 0.1	63 ± 1	83 ± 3	21 ± 1
12		<3.9	<1.7	49 ± 1	47 ± 11	15.3 ± 0.1
MCP for human c	onsumption					
13	0.41 ± 0.05	<3	<1.5	1.0 ± 0.1	<19	<5.7
14	3.2 ± 0.2	<6.4	<2.3	0.6 ± 0.1	<40	7 ± 3
15	<0.76	<5.2	<2.5	0.3 ± 0.1	<32	<9.5
16	<0.76	<5.2	<2.5	0.2 ± 0.1	<32	<10

Table 4

Metal content in DCP and TCP samples for animal and human consumption commercialized in Catalonia in 2006.

Sample code	$Mg(mgg^{-1})$	Al $(mg g^{-1})$	$\operatorname{Fe}(\operatorname{mg} \operatorname{g}^{-1})$	$Zn (mg g^{-1})$	$Cr(\mu gg^{-1})$	As $(\mu g g^{-1})$	$Cd(\mu gg^{-1})$	$Hg(\mu gg^{-1})$	$Pb(\mu g g^{-1})$
DCP for domest	ic animals								
1	0.18	0.19	0.41	0.16	49	2.4	0.62	<0.025	4.9
2	0.2	0.2	0.43	0.057	43	1.6	0.53	<0.025	4.7
3	0.16	0.18	0.39	0.26	57	3.9	0.55	<0.025	4.9
4	0.26	0.24	0.46	0.12	47	2.4	0.44	<0.025	4.5
5	2	2.8	1.8	0.12	156	0.22	4.1	<0.025	1.2
6	2.1	2.7	1.9	0.11	166	0.21	2.8	<0.025	0.76
7	5.3	2	1.9	0.41	67	0.99	2.8	<0.025	0.39
8	10.2	3.2	2.4	1.05	127	0.57	6.5	<0.025	0.29
9	0.27	0.26	0.44	0.07	43	2.4	1.3	<0.025	3.9
10	0.23	0.34	0.48	0.1	46	2.3	0.48	0.045	4.4
11	4.2	0.65	1.9	0.28	166	3.6	5.2	<0.025	1.5
12	3.6	0.74	1.9	0.19	163	1.4	4.2	<0.025	0.9
TCP for humans									
13	0.91	0.2	0.32	< 0.01	2.7	0.058	< 0.05	< 0.025	0.22
14	4.6	0.44	0.55	0.014	22	0.49	0.15	<0.025	0.39


TCP samples for human consumption (samples 13 and 14) had lower metal concentrations compared to DCP samples, especially Cr and Cd.

3.4. DCP and TCP radionuclides data analysis

The broader results of some of the ²³⁸U-series radionuclides were analyzed through a hierarchical cluster analysis, allowing a statistical identification of relatively homogeneous sample groups based on radionuclide activities (e.g. ²³⁸U, ²³⁴Th, ²³⁴U, ²²⁶Ra, ²¹⁰Pb and ²¹⁰Po)(Fig. 1). Excluding sample 8, radionuclide contents in DCP and TCP samples were classified into three main different groups:

- (i) Group A: samples 1–4, 9 and 10.
- (ii) Group B: samples 5-7, 11 and 12.
- (iii) Group C: samples 13-16.

Samples of group A (Table 5) were characterized by high concentration values of 210 Pb and 210 Po (with mean activities of 2108 ± 146 and 852 ± 286 Bq kg⁻¹) and low activities of 230 Th (48 ± 22 Bq kg⁻¹). In contrast, samples of group B had low specific activities of both 210 Pb and 210 Po (<100 Bq kg⁻¹), whereas they contained high activities of 230 Th (1203 ± 1022 Bq kg⁻¹). Group C was characterized for its low uranium, thorium, radium, lead and polonium radionuclide concentrations (<25 Bq kg⁻¹). It is important to note that there was relatively large heterogeneity within group B. The differences were

Fig. 1. Hierarchical cluster analysis of DCP samples for human and animal consumption. Variables considered were specific concentrations of ²³⁸U, ²³⁴Th, ²³⁴U, ²²⁶Ra, ²¹⁰Pb and ²¹⁰Po. Clusters were named as group A (samples 1–4, 9 and 10), group B (samples 5–7, 11 and 12) and group C (samples 13–16). Sample 8 was considered as an outlier.

Average radionuclide concentrations in groups A, B and C of DCP and TCP samples. Group A: samples 1–4, 9 and 10; group B: samples 5–7, 11 and 12; group C: TCP samples for human consumption (13–16).

Group code	238 U (Bq kg $^{-1}$)	234 Th (Bq kg $^{-1}$)	234 U (Bq kg $^{-1}$)	230 Th (Bq kg $^{-1}$)	226 Ra (Bq kg $^{-1}$)	$^{210}{ m Pb}({ m Bq}{ m kg}^{-1})$	²¹⁰ Po (Bq kg ⁻¹)
A	1138 ± 109	909 ± 76	906 ± 97	48 ± 22	96 ± 23	2108 ± 146	852 ± 286
В	1279 ± 183	923 ± 165	1254 ± 219	1203 ± 1022	15 ± 4	65 ± 79	20 ± 7
С	12 ± 10	<12	11 ± 9	31 ± 21	9 ± 7	5 ± 3	7 ± 2

Group A							
²³⁸ U	1						
²³⁴ Th	0,80 ± 0,13	1					
²³⁴ U	0,80 ± 0,14	$1,00 \pm 0,14$	1				
²³⁰ Th	$0,04 \pm 0,46$	$0,05 \pm 0,46$	$0,05 \pm 0,46$	1			
²²⁶ Ra	$0,08 \pm 0,25$	0,11 ± 0,25	0,11 ± 0,26	$2,00 \pm 0,51$	1		
²¹⁰ Pb	$1,85 \pm 0,12$	$2,32 \pm 0,11$	$2,33 \pm 0,13$	$43,62 \pm 0,45$	$21,9 \pm 0,2$	1	
²¹⁰ Po	$0,75 \pm 0,35$	$0,94 \pm 0,20$	0,94 ± 0,11	$17,63 \pm 0,56$	8,8 ± 0,4	$0,40 \pm 0,34$	1
	²³⁸ U	²³⁴ Th	²³⁴ U	²³⁰ Th	²²⁶ Ra	²¹⁰ Pb	²¹⁰ Po
Group B							
²³⁸ U	1						
²³⁸ U ²³⁴ Th	$1 \\ 0,72 \pm 0,23$	1					
²³⁸ U ²³⁴ Th ²³⁴ U	5	1 1,36 ± 0,23	1				
²³⁸ U ²³⁴ Th ²³⁴ U ²³⁰ Th	0,72 ± 0,23	$1 \\ 1,36 \pm 0,23 \\ 1,11 \pm 1,02$	$1 0,81 \pm 1,02$	1			
²³⁸ U ²³⁴ Th ²³⁴ U ²³⁰ Th ²²⁶ Ra	$0,72 \pm 0,23$ $0,98 \pm 0,23$, , ,	$\begin{array}{r} 1 \\ 0,81 \ \pm \ 1,02 \\ 0,01 \ \pm \ 0,31 \end{array}$	1 0,01 ± 1,03	1		
²³⁸ U ²³⁴ Th ²³⁴ U ²³⁰ Th ²²⁶ Ra ²¹⁰ Pb	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1,11 ± 1,02		$\begin{array}{r} 1 \\ 0,01 \ \pm \ 1,03 \\ 0,06 \ \pm \ 1,58 \end{array}$	1 4,4 ± 1,2	1	
²³⁸ U ²³⁴ Th ²³⁴ U ²³⁰ Th ²²⁶ Ra	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$1,11 \pm 1,02$ $0,02 \pm 0,31$	0,01 ± 0,31		$ \begin{array}{r} 1 \\ 4,4 \pm 1,2 \\ 1,3 \pm 0,4 \\ \end{array} $	1 0,30 ± 1,27 210Pb	1 210po

Fig. 2. Activity ratios of the U-238 decay series isotopes in groups A and B samples. Isotopes in the Y-axis correspond to the ratio numerator.

mainly due to samples 11 and 12, which had lower activities of ²³⁰Th compared to the rest of the samples from group B. Sample 8 also had low specific concentrations of ²¹⁰Pb and ²¹⁰Po, similar to group B, but rather high specific concentrations of the other radionuclides. Thus this sample was considered to be an outlier in our clustering analysis. Isotopic ratios are shown in Fig. 2, determined using average values compiled in Table 5.

Current

4. Discussion

The different radionuclide activities in DCP samples could be derived from two causes: (i) the geological characteristics of the phosphate rock; and (ii) the industrial manufacturing processes used for its production.

4.1. Geologic characteristics of DCP and TCP source rocks

Unfortunately, very little information regarding the origin and industrial process of the phosphate-based products were provided (Table 1). Samples 1–9 were produced using phosphate rocks from either Morocco or the Negev Dessert, Israel. Samples 5–8, and 11 and 12 were produced using phosphoric acid, suggesting extraction via sulphuric acid (see below).

This information allowed us to make some assumptions regarding our samples. For example, samples 1–9 were likely produced from sedimentary phosphate rocks, typical of the Morocco or the Negev Dessert. This is supported by the radionuclide activities. All DCP samples used as a poultry feed supplement contained elevated concentrations of nuclides in the ²³⁸U decay chain (~10³ Bq kg⁻¹) and low activities in ²³²Th decay series isotopes. If DCP samples came from the digestion of igneous rocks, the proportion ²³⁸U/²³²Th would be reversed. Furthermore, although ²³⁸U and its decay chain daughters may vary from 1500 Bq kg⁻¹ in Morocco to 5000 Bq kg⁻¹ in Tanzania [15,16], the activities of the DCP samples were of a similar order of magnitude. No information was available for samples 10–16, but the high ²³⁸U activities of samples 12 and 13 (\sim 10³ Bq kg⁻¹) relative to ²³²Th, suggests a sedimentary origin of the raw material.

4.2. Radionuclide distributions due to industrial manufacturing processes used for DCP and TCP production

DCP and TCP are produced by the wet acid digestion of phosphate rock by either sulphuric or hydrochloric acid. When using sulphuric acid the resulting slurry is filtered to separate the product, phosphoric acid, from the insoluble by-product, phosphogypsum. The phosphoric acid is then further processed for the production of fertilizer ingredients and animal feed ingredients, such as DCP and TCP [1]. The use of hydrochloric acid for digestion of phosphoric rock is less widespread, but it is the dominant method for production of DCP in Spain. The phosphate rock is partially dissolved in hydrochloric acid. Whereas the undissolved fraction is eliminated in the form of slag, in the dissolved fraction CaCO₃ is added in order to adjust the pH to \sim 2. This results in the precipitation of DCP and subsequent separation by vacuum filtration [12]. According to Gäfvert et al. [12] two sludges are formed: one mainly consisting of undissolved phosphate rock, SiO₂ and fluoride compounds such as CaF₂ and the other, composed of Mg(OH)₂. Prior to industrial processing, the 238 U decay series within

Prior to industrial processing, the ²³⁸U decay series within phosphate rocks is essentially in radioactive equilibrium [4,17–20]. Deviations from secular equilibrium occur during the wet phosphoric acid treatment of the rock, as the various radionuclides are partitioned into various phases according to their solubility (which in turn depends on variables such as pH, temperature, and

 O_2 availability). Unfortunately, although a considerable amount of compositional data exists for phosphogypsum, there is little information available on the fractionation and distribution of radionuclides within phosphate products [11].

The isotopic ratios (Fig. 2) confirm that radionuclide fractionation occurred during the production of DCP. ²³⁰Th/²³⁸U, ²²⁶Ra/²³⁸U and ²¹⁰Pb/²³⁸U were for the most part, far from unity, suggesting different reaction mechanisms of the elements during the treatment of the phosphate rock in DCP and TCP production. The following discussion mainly focused on specific chemical behaviours of various U-series radioactive daughters that may occur during phosphate rock processing and is used to identify the method by which the DCP and TCP samples were produced in this study.

4.2.1. Uranium

Uranium is generally soluble in any acid, although it strongly depends on redox conditions [6,21]. All analyzed samples of DCP for animal consumption contained relatively high activities of both 238 U and 234 U, ranging from 999 and 1450 Bq kg⁻¹ and 784 and 1436 Bq kg⁻¹, respectively (excluding sample 8). However, uranium isotopic ratios for group A and B samples differed (p < 0.08 for 238 U and 0.03 for 234 U) (Fig. 2). Whereas the 234 U/ 238 U ratio was close to unity in samples from group B, they were below unity in group A. It has been suggested that 234 U/ 238 U disequilibria may occur in phosphate rock due to the preferential leaching of 234 U relative to 238 U mostly in particle sizes <1 μ m during weathering processes [18]. In our case, however, these differences were likely due to the oxidation conditions produced by the acids during the digestion of the phosphate rock [6,12].

When phosphate rock is digested with sulphuric acid, only a small percentage of uranium (5-10%) fractionates into the solid phosphogypsum phase [10,16]. In other words, U tends to favour the dissolved phosphoric acid phase during sulphuric acid processing as the U⁴⁺ present in the phosphate rock oxidizes to U⁶⁺ (which is more soluble, and hence more mobile) during the acidification process. The dissolved uranium is then largely incorporated into the acid phase as uranyl phosphate, sulphate or fluoride complexes [6,11]. Under reducing conditions, U⁶⁺ reduces to U⁴⁺ and then precipitates with phosphogypsum, since U⁴⁺ has very similar ionic radii to Ca²⁺ [21]. Reduction conditions depend on the amounts of Fe²⁺ [21,22]. Moreover, the oxidation state of uranium is not exactly the same in all sedimentary phosphate ores. Indeed, Rajković et al. [23] concluded that for phosphate rock from the USA in which uranium is present mainly as U4+, 60-80% of the uranium passes into the acid using the wet method and the remaining 20-40% precipitates together with phosphogypsum. In contrast, uranium in phosphate from Africa is predominantly in the form U⁶⁺, and thus its fraction in the acid can reach 90%. Another factor affecting uranium solubility is pH. At pH < 5, the uranyl ion (UO_2^{2+}) and uranyl fluoride complexes dominate, but minimum uranium solubility occurs between a pH of \sim 5–8.5 [6], resulting in most of the U precipitating with the final product (in this case, DCP). Thus, uranium in the phosphogypsum was considerably lower (\sim 5%), and a high percentage of the uranium contained in the raw material was found in the final DCP products [11,19].

During hydrochloric acid production of DCP, Gäfvert et al. [12] found that DCP contains about 75% of the total uranium from the initial phosphate rock. This is because uranium in contact with hydrochloric acid leads to soluble U⁴⁺ and U³⁺ and both are soluble under acidic conditions [24]. While small differences in the uranium content of DCP were found; this is likely due to the fact that sulphuric acid dissolves uranium more slowly than HCI [24].

4.2.2. Thorium

 230 Th concentrations were significantly different between groups A and B (Fig. 2): whereas in group A the 230 Th/ 238 U ratios

were very low (0.04 ± 0.46) , they were above unity (1.50 ± 0.26) in group B (excluding samples #11 and #12). Group A samples did not contain significant concentrations of 230 Th (77 ± 22 Bq kg⁻¹), in agreement with Gäfvert et al. [12], who reported that only 1% of the ²³⁰Th from the phosphate precipitates together with DCP. Although thorium is very soluble with hydrochloric acid [24], it has also a high affinity for particulate and colloidal surfaces [6,25]. It thus concentrates in the sludge. Thorium may also be complexed by fluoride ions to form ThF₄, which co-precipitates with CaF₂ during HCl processing [12]. Samples from group A contained relatively large concentrations of ²³⁴Th. This is due to the fact that while thorium is not significantly present in the final product just after its production, the time lapse between DCP production and its commercialization (and analysis) is long enough for ²³⁴Th to grow back into secular equilibrium with ²³⁸U (²³⁴Th half life is 24 days). This was not the case for 230 Th due to its much longer half life (7×10^4 vears).

Concentrations of ²³⁰Th in samples 5–8 ranged from 1453 to 4512 Bq kg⁻¹. This suggests that samples from group B were produced via sulphuric wet acid digestion, in which both thorium and uranium distribute primarily into the acid phase [20,26]. Its presence in DCP was due to the fact that total Th in solution decreases as pH is increased to 5, as solid Th(OH)₄ forms [6]. Hence, it is likely that thorium precipitated once lime was added to the phosphoric acid to produce DCP. Samples 11 and 12 contained measurable ²³⁰Th activities, although in significantly lower concentrations than the rest of the samples from group B. This might be due to subtle variations in the production process used in these particular samples.

The above analysis suggests that group A was produced via hydrochloric acid digestion, while group B samples were derived from sulphuric acid. However, it should be noted that different patterns within each production process, particularly to the longer and more complex processing associated with sulphuric acid likely exists as samples from group B were significantly more heterogeneous.

4.2.3. Radium

Unlike uranium and thorium, radium geochemistry was less clear. The fractionation of radium and its progeny is evident from the corresponding isotopic ratios (Fig. 2). The 226 Ra/ 238 U ratios were far below unity in both groups (0.08 ± 0.25 and 0.01 ± 0.29 for groups A and B, respectively), as only a small fraction of the radium found in the rock was maintained in the final product. Radium is a divalent element, such as Ba, Sr and Ca, and thus follows similar chemical pathways [6,19]. When hydrochloric acid is used for the phosphate rock digestion some radium co-precipitates in the sludge with CaF₂ in the form of RaF₂. The remaining radium remains in solution in the form of RaCl₂. The concentration of 226 Ra in the various products should thus be proportional to the concentration of calcium chloride [12].

Radium concentrations in Group B samples were even lower than in group A samples. Several studies have demonstrated that radium partitions into phosphogypsum when the phosphate rock is digested with sulphuric acid, leading to little amounts of ²²⁶Ra (<2%) in DCP [1,17,27]. Ra-226 appears to be closely associated with the finer hemihydrate particles than the larger dehydrate particles, similar to fine phosphogypsum grains [6,27]. The exact reasons why ²²⁶Ra is mostly found in phosphogypsum remains enigmatic, but it is likely due to a combination of several mechanisms [11]: radium may (i) be strongly sorbed by phosphogypsum surfaces [28]; (ii) co-precipitate as some yet unknown phase or solid solution with CaSO₄·nH₂O [1]; (iii) be included in radiobarite (Ra-bearing BaSO₄) or (Ba,Sr)SO₄ solid solutions [22] or (iv) even remain within phosphate rock particles which have survived the sulphuric acid attack [6].

4.2.4. Lead

Lead to uranium ratios generally followed reverse trends than the ²³⁰Th/²³⁸U ratios discussed above, with the exception of samples 11 and 12 (Fig. 2). ²¹⁰Pb/²³⁸U ratios were above unity in group A samples (1.85 ± 0.12), but were very low in samples from group B (0.05 ± 0.14) . Group A distributions are explained through the fact that Pb. like Th. is more particle reactive than U. Thus lead activities increase when DCP precipitates due to its adsorption onto smaller size particles [18]. During hydrochloric acid digestion. ²¹⁰Pb forms a $PbCl^{2}_{4}$ complex [24] that does not precipitate until the final step in DCP production. However, Gäfvert et al. [12] reported that ²¹⁰Pb concentrations in DCP was only 13% of the total ²¹⁰Pb inflow. They suggested that ²¹⁰Pb is uniformly distributed between the various products and wastes of the DCP production. Differences between the results obtained in this study and those found in Gäfvert et al. [12] might be due to varying steps within the production process. In their study, after chemical digestion of the rock, the pH is adjusted to \sim 2 and the DCP is precipitated from solution, which is subsequently used for the production of calcium chlorine. Before the solution is transported elsewhere, the pH is readjusted to \sim 10, resulting in a second sludge which contains more than 30% of the total inflow of ²¹⁰Pb [12]. In a similar industrial process also using HCl, monocalcium phosphate is formed and the pH is adjusted with CaCO₃ after chemical digestion of the rock. This results in direct production of DCP with no further steps [29]. Therefore ²¹⁰Pb is not removed, and remains in the final products.

All group B samples presented low ²¹⁰Pb concentrations and corresponding ²¹⁰Pb/²³⁸U ratios were well below unity (Fig. 2). Some studies suggest that when phosphate rock is digested with sulphuric acid. ²¹⁰Pb may: (i) appear primarily in the acid stream together with Th [1,6], since lead solubility is low except in acidic environments [30]; or (ii) distribute uniformly in the product and in phosphogypsum [26]. Our results suggested that ²¹⁰Pb was not present in phosphoric acid [10,11,19,31]. Lead speciation and solubility may also be controlled by pH, temperature and redox conditions. In particular, Rutherford et al. [6] stated that lead carbonate and lead sulphate are quite insoluble and often control the solubility of lead in oxidizing environments. Furthermore, under reducing conditions Pb is likely to precipitate as PbS. Adsorption onto clays and organic materials may maintain low Pb concentrations in solution (i.e. Pb may be absorbed onto the small particles of the sludge). Regarding the effect of temperature, Burriel-Martí et al. [24] reported that lead is dissolved in the form of $Pb(HSO_4)_2$ only at high temperatures of sulphuric acid digestion.

4.2.5. Polonium

The 210 Po/ 238 U ratio followed a pattern similar to that of the 210 Pb/ 238 U ratio, although 210 Po concentrations were lower. Gäfvert et al. [12] reported that for the HCl process, only 30% of the total input of 210 Po co-precipitates with the DCP. The reasons are that polonium either co-precipitates with Mg(OH)₂ and is collected in the sludge [12] or forms PoCl₂ and remains dissolved into the waste solution. As it can be shown in Fig. 2, the 210 Po/ 210 Pb ratio in Group A samples were always <1, around 0.5. This suggests that in Group A 210 Po were mostly derived from 210 Pb decay since production, although not enough time had passed for 210 Po to reach secular equilibrium with 210 Pb at the time of analysis.

In contrast, samples from group B (digested with sulphuric acid) contained low specific activities of ²¹⁰Po, ranging from 0 to 29 Bq kg⁻¹. Most of the ²¹⁰Po found in the original phosphate rock may have been partitioned, together with ²²⁶Ra and ²¹⁰Pb, into the phosphogypsum during wet acid production [6,11,19,22,31]. These values agree with Hurst and Arnold [21], who reported that 99% of the ²¹⁰Po appears in the phophogypsum phase. Therefore, the ²¹⁰Po found in DCP samples from this group would also came from ²¹⁰Pb decay since production.

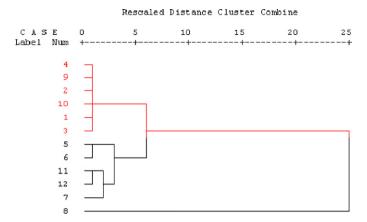


Fig. 3. Hierarchical cluster analysis of DCP samples for animal consumption. Variables considered were specific concentrations of Mg, Al, Fe, Zn, Cr, As, Cd and Pb.

4.2.6. Other isotopes

Although the ²³⁸U decay series radionuclides are the most abundant in sedimentary phosphate rocks, radionuclides of the ²³⁵U and ²³²Th decay series may also help when interpreting our results. Indeed, ²³⁵U distributions followed those of ²³⁸U and ²³⁴U, but activities were one order of magnitude lower; the same occurred for ²³²Th, which chemically behaves like ²³⁰Th. Protactinium-231 was quantifiable only in samples produced via sulphuric acid digestion, agreeing with Beddow et al. [32] who reported that ²³⁴Pa was retained in the sulphuric acid solution as it is rich in fluorides and phosphates. In contrast, when DCP is produced via HCl, which contains lower fluoride and phosphates, ²³¹Pa may co-precipitate with the waste slag.

It is also important to note the chemical behaviour of potassium. Phosphate ores are usually poor in ⁴⁰K [14], generally ranging from below detection to 200 Bq kg⁻¹ for both sedimentary and magmatic ores [5,15,19,33]. According to Burriel-Martí et al. [24] potassium is not soluble in any acid, so concentration increases in acidic solutions do not occur. In our study, there were clear differences in ⁴⁰K activities between samples from group A with ⁴⁰K activities below 10 Bg kg⁻¹ and samples within group B. characterized by specific ⁴⁰K activities of 15–57 Bq kg⁻¹. This suggests that ⁴⁰K might be slightly more soluble in sulphuric acid than in hydrochloric acid. Costa-Garangou [29] reported that residual muds analyzed from a phosphate industry where DCP was produced via hydrochloric acid contained higher values of ⁴⁰K compared to the raw material, up to 820 ± 51 Bq kg⁻¹. Indeed, Gäfvert et al. [12] reported that 40 K concentrations were enhanced in sands and clays that are removed prior to delivery of phosphate rock to the processing plant.

4.3. Metal contents in DCP samples

The hierarchical cluster analysis of the metal contents in DCP and TCP samples for animal consumption commercialized in Catalonia (Fig. 3) also suggested different chemical processing mechanisms. Metals, like radionuclides, fractionate either in the acid or in wastes of the wet acid digestion of the phosphate rock. For example, high concentrations of Mg, Al and Fe, as well as Cr and Cd, corresponded to samples with high concentrations of 230 Th ($\sim 10^3$ Bq kg⁻¹) and low values of 210 Pb (group B). Higher values of As and Pb with the group of samples with high concentrations of 210 Pb ($\sim 2 \times 10^3$ Bq kg⁻¹) (group A). The exceptions were samples 11 and 12, which contain higher concentrations of As and lower concentrations of Al compared to the other samples of the same group. This again demonstrated the heterogeneity of group B samples relative to group A.

Specific concentrations of ²¹⁰Pb and ²¹⁰Po (Bq kg⁻¹ dry weight) in Diets I, II and III. For each diet, samples of breast (*n*=2), thigh (*n*=2), liver (*n*=2), kidney (*n*=2), bone (*n*=2) and excrements (*n*=3) as well as samples of whole animal (*n*=3) at age 21 days were analyzed.

	Diet I (2.5% TCP)	Diet I (2.5% TCP)			Diet III (2.5% DCP)	
	²¹⁰ Pb	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po
Chicken fodder	1.0 ± 0.3	0.9 ± 0.4	101 ± 4	74 ± 8	51 ± 2	37 ± 2
Breast	0.6 ± 0.5	<0.2	0.2 ± 0.2	1.4 ± 0.1	0.3 ± 0.4	0.9 ± 0.4
Thigh	<0.06	0.1 ± 0.2	<0.1	1.0 ± 0.2	<0.2	0.9 ± 0.9
Liver	0.3 ± 0.4	0.4 ± 0.2	1.2 ± 0.6	11 ± 3	0.50 ± 0.07	13.6 ± 0.4
Kidney	< 0.05	1.20 ± 0.02	3.0 ± 0.3	28.3 ± 0.3	3.10 ± 0.02	26 ± 4
Bone	0.3 ± 0.3	<0.1	12.6 ± 0.4	2.63 ± 0.03	11 ± 2	1.5 ± 0.8
Excrements	5.0 ± 1.1	4.5 ± 0.7	369 ± 26	230 ± 3	176 ± 16	112 ± 21

Our results agree with Beddow et al. [32], who suggested that Hg and Pb distribute primarily into phosphogypsum and thus do not reach the final phosphate products (DCP). Other studies report that Al, Fe and Mg, together with P, F and Si, are also found in the phosphogypsum, especially when the phosphate rock has a sedimentary origin [6]. As a matter of fact, heavy metals are presumed to be stabilised and encapsulated in calcium sulphate and calcium hydroxyapatite [32]. Therefore phosphogypsum displays higher relative and absolute concentrations of metals contained in the mobile fraction than phosphate rock [34,35].

When phosphate rock is treated with hydrochloric acid even lower values of Mg, Fe and Al are found in group A samples compared to group B. This is in agreement with El-Shall and Abdel-Aal [36], who reported that as much as 89% of Mg, Fe and Al are eliminated during its co-precipitation with calcium fluoride.

Overall, the wet acid digestion of the phosphate rock using either hydrochloric acid or sulphuric acid explains the different elemental distributions between groups A and B. However, differences in metal concentrations of group C (meant for human consumption) were a result of Spanish law RD 465/2003 [37] (transposed from 2002/32 CE Directive [38]) and JECFA [39]. The stricter limits for As, Cd, Hg and Pb in human foodstuff additives therefore requires better purification of the final P products, thus leading to even further reduced radionuclide activities.

4.4. Radiological risk assessment due to DCP consumption

A radiological risk assessment was conducted to estimate the dose that humans would receive due to the ingestion of poultry meat (in particular chicken meat) previously fed with certain quantities of DCP in their diets.

Three different diets were prepared with different contents of TCP and DCP. Diet I was used as a blank, and had only 2.5% TCP by weight (sample 13); Diet II had fodder with 5% DCP by weight, of DCP characteristic of group A samples; and Diet III contained a 2.5% DCP by weight of DCP, again, similar to group A. It is important to note that typical percentages of DCP in poultry fodder are around 1.4%. Three groups of 9 chickens were divided into 9 cages (3 chickens in each cage) and fed over 2 weeks with the three different diets (Diets I, II and III). A total of 48 samples were collected, freeze-dried and analyzed. For each diet, samples were divided into the following: 3 samples of whole chicken; 2 pools of 6 samples of thigh, breast, bone, liver and kidneys (each pool corresponding to one cage); and 3 excreta samples corresponding to the 3 cages. Lead-210 and ²¹⁰Po where chosen to analyze in all samples, since they are the two radionuclides of the ²³⁸U decay series that mostly contribute to radioactive exposure, or dose, by ingestion. Their high effective dose coefficients (h(g)) of 6.9×10^{-7} Sv Bq⁻¹ (for ²¹⁰Pb) and 1.2×10^{-6} Sv Bq⁻¹ (for ²¹⁰Po), result in relative effective doses of 19 and 63% of the nuclides within the ²³⁸U decay series, assuming secular equilibrium [40].

The specific concentrations in chicken fodders were 1, 101 and 51 Bq kg⁻¹ for 210 Pb and 0.9, 74 and 37 Bq kg⁻¹ for 210 Po in Diets

I, II and III, respectively (Table 6). Results clearly show that most 210 Pb and 210 Po is eliminated through animal excreta and only a small fraction is accumulated in the edible parts (breast and thigh). Observable concentrations of 210 Pb were only determined in bones, while only slightly enhanced activities of 210 Po were measured in liver and kidneys. Our results agree with Linsalata [41] who reported values of 16.7 mBq kg⁻¹ (fresh weight, corresponding to \sim 0.06 Bq kg⁻¹ dry weight) of 210 Pb in poultry muscle. Results were also similar to the ones reported in UNSCEAR [40] as reference values of 210 Pb and 210 Po in food.

From the obtained concentrations in chicken, the dose to human could be calculated as [42]:

$$\mathbf{E} = \boldsymbol{M} \cdot \boldsymbol{C} \cdot \boldsymbol{h}(\boldsymbol{g}) \tag{1}$$

where *M* is the annual average quantity of poultry meat consumed per person in Catalonia, Spain (25 kg wet weight) [43], *C* is the specific concentration of ²¹⁰Pb and ²¹⁰Po in edible parts as determined in this work (Bq kg⁻¹ dry weight) and h(g) refers to the effective dose coefficients for ²¹⁰Pb and ²¹⁰Po (Sv Bq⁻¹) [44].

Calculated annual radiological doses due to ingestion of ²¹⁰Pb and ²¹⁰Po in chicken meat previously fed with Diets I. II and III were: 2 ± 2 , 11 ± 2 and $9.4\pm 0.3 \,\mu\text{Sv}\,\text{y}^{-1}$, respectively (Table 7). These doses are negligible compared to the average dose of 2400 μ Sv y⁻¹ received per person due to natural sources (surface soils, air, food and water supplies). Izak-Biran et al. [8] estimated the dose to human from chicken consumption is about 40 μ Sv y⁻¹. This larger dose compared to our estimate relies on the fact that they assumed similar activities of ²¹⁰Pb and ²¹⁰Po in the breast and thighs of chicken, while in the present paper it is shown that ²¹⁰Pb and ²¹⁰Po were not in equilibrium in poultry meat. Our estimates were also lower than Arruda-Neto et al. [9], who assumed that 2% of DCP containing 200 ppm of ²³⁸U was included in chicken diet. However, theoretical assumptions were made to predict the uranium food-to-animal transfer, which resulted in activities of 8.68 Bg kg⁻¹ of ²³⁸U in poultry meat. This lead to a much higher annual dose (\sim 0.5 mSv y⁻¹ per person). In the present study, ²¹⁰Pb and ²¹⁰Po were specifically determined in DCP samples as well as in chicken tissues, allowing us to predict a more realistic dose to humans.

Table 7

Annual dose to a Catalan adult through the ingestion of chicken fed with fodder containing different types and concentrations of DCP or TCP. Concentrations of ²¹⁰Pb and ²¹⁰Po are the main values obtained from their accumulation in breast and thigh (see Table 6). The annual chicken meat consumption is 25 kg per person. See text for details.

Diet	Radionuclide	Dose (μ Sv y ⁻¹)	Total dose (μ Sv y ⁻¹)
TCP 2.5%	²¹⁰ Pb ²¹⁰ Po	$\begin{array}{c} 1.6 \pm 2.3 \\ 0.6 \pm 0.9 \end{array}$	2 ± 2
DCP 5%	²¹⁰ Pb ²¹⁰ Po	$\begin{array}{c} 0.4 \pm 0.5 \\ 11 \pm 2 \end{array}$	11 ± 2
DCP 2.5%	²¹⁰ Pb ²¹⁰ Po	$\begin{array}{c} 1.2 \pm 0.2 \\ 8.2 \pm 0.3 \end{array}$	9.4 ± 0.3

5. Conclusions

The concentrations of the naturally occurring ²³⁸U, ²³⁵U and ²³²Th decay series in DCP and TCP samples indicated that the radioactive equilibrium in the phosphate rock was disrupted during industrial chemical processing. Samples corresponding to TCP used in human additives were characterized by low radioactivities (<50 Bg kg⁻¹ of the analyzed radionuclides). Samples of DCP used for animal consumption contained higher activities, and were classified into two sub groups. Group A samples were characterized by low ²³⁰Th activities (<150 Bq kg⁻¹), but high activities of ²¹⁰Pb $({\sim}2\times10^3\,Bq\,kg^{-1}),\,^{210}Po\,({\sim}800\,Bq\,kg^{-1})$ and slightly elevated values of 226 Ra (10^2 Bq kg $^{-1}$). In contrast, samples from group B had high activities of ²³⁰Th (10³ Bq kg⁻¹) but low activities of ²²⁶Ra, 210 Pb and 210 Po (<30 Bq kg⁻¹). These differences were due to the chemical behaviour of the various elements during the production process: group A samples were produced by wet-acid digestion of the phosphate rock via hydrochloric acid, whereas group B samples were obtained through phosphate rock digestion with sulphuric acid. The two different chemical processes for the production of the DCP samples are corroborated through the analysis of metal concentrations. Whereas hydrochloric acid digestion lead to high Pb and As concentrations in the final product, the sulphuric acid treatment of the rock generally produced high concentrations of Cd and others (Mg, Al, Fe, Cr). The legal limits for Hg, Cd, Pb and As in food additives for human consumption (i.e. TCP) required further purification that in turns lead to lower concentrations of radionuclides from the ²³⁸U decay chain in these sample types.

Our experiments with poultry fed with different contents of DCP and TCP allowed us to determine the degree of accumulation of radionuclides in chicken tissues. The estimated dose to humans via consumption of chicken meat ranged between 2 and $11 \,\mu$ Sv y⁻¹, suggesting the absence of any actual radiological risk to man associated with the consumption of radioactive containing DCP fed to animals.

Acknowledgements

The authors wish to thank the Agència Catalana de Seguretat Alimentària of the Generalitat de Catalunya for providing with the DCP and TCP samples. The authors wish to thank Claudia Benitez-Nelson for her meticulous and detailed suggestions that substantially improved this paper. Support for the research of PM was received through the prize ICREA Academia, funded by the Generalitat de Catalunya.

References

- C.E. Roessler, Control of radium in phosphate mining, beneficiation and chemical processing, The Environmental Behaviour of Radium, vol. 2, Technical Report Series No. 310, IAEA Vienna, 1990, pp. 269–279.
- [2] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and Effects of Ionizing Radiation, United Nations, New York, 1998.
- [3] W.C. Burnett, H.H. Veeh, Uranium-series studies of marine phosphates and carbonates, in: M. Ivanovich, R.S. Harmon (Eds.), Uranium Series Desequilibrium: Applications to Earth, Marine and Environmental Sciences, Univ. Press, Oxford, 1992, pp. 485–512 (Chapter 14).
- [4] R.G. Menzel, Uranium, radium and thorium content in phosphate rocks and their possible radiation hazard, Journal of Agricultural and Food Chemistry 16 (1968) 231–234.
- [5] E. Stranden, Sources of exposure to technologically enhanced natural radiation, The Science of the Total Environment 45 (1985) 27–45.
- [6] P.M. Rutherford, M.J. Dudas, R.A. Samek, Environmental impacts of phosphogypsum. Review article, The Science of the Total Environment 149 (1994) 1–38.
- [7] D.F. Reid, W.M. Sackett, R.F. Spalding, Uranium and radium in livestock feed supplements, Health Physics 32 (1976) 535–540.
- [8] T. Izak-Biran, T. Schlesinger, R. Weingarten, O. Even, Y. Shamai, M. Israeli, Concentrations of U and Po in animal feed supplements, in poultry meat and eggs, Health Physics 56 (1988) 315–319.

- [9] J.D.T. Arruda-Neto, M.V. Tavares, M. Filadelfo, Concentrations of uranium in animal feed supplements: measurements and dose estimates, Journal of Radioanalytical and Nuclear Chemistry 221 (1997) 97–104.
- [10] A.J. Poole, D.J. Allington, A.J. Baxtern, A.K. Young, The natural radioactivity of phosphate ore and associated waste products discharged into the eastern Irish Sea from a phosphoric acid production plant., The Science of the Total Environment 173/174 (1995) 137–149.
- [11] C.D. Hull, W.C. Burnett, Radiochemistry of Florida phosphogypsum, Journal of Environmental Radioactivity 32 (1996) 213–238.
- [12] T. Gäfvert, E. Holm, P. Roos, Radionuclide fluxes at a plant manufacturing dicalcium phosphate for domestic animals, Journal of Environmental Radioactivity (2001) 61–73.
- [13] J.A. Sanchez-Cabeza, P. Masqué, I. Ani-Rigolta, ²¹⁰Pb and ²¹⁰Po analysis in sediments and soils by microwave acid digestion, Journal of Radioanalytical and Nuclear Chemistry 227 (1998) 19–22.
- [14] A. Martinez-Aguirre, M. García-León, Radioactive impact of phosphate ore precessing in a wet marshland in southwestern Spain, Journal of Environmental Radioactivity 34 (1997) 45–57.
- [15] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and Effects of Ionizing Radiation, United Nations, New York, 1982.
- [16] M.M. Makweba, E. Holm, The natural radioactivity of the rock phosphates, phosphatic products and their environmental implications, The Science of the Total Environment 133 (1993) 99–110.
- [17] C.E. Roessler, Z.A. Smith, W.E. Bolch, R.J. Prince, Uranium and Radium-226 in Florida phosphate materials, Health Physics 37 (1979) 269–277.
- [18] R. Metzger, J.W. McKlveen, K. Jenkins, W.J. McDowell, Specific activity of Uranium and Thorium in marketable rock phosphate as a function of particle size, Health Physics 39 (1980) 69-75.
- [19] B.P. Mazzilli, V. Palmiro, C. Saueia, M.B. Nisti, Radiochemical characterization of Brazilian phosphogypsum, Journal of Environmental Radioactivity 49 (2000) 113–122.
- [20] C.H. Saueia, B.P. Mazzilli, D.I.T. Favaro, Natural radioactivity in phosphate rock, phosphogypsum and phosphate fertilizers in Brazil, Journal of Radioanalytical and Nuclear Chemistry 264 (2005) 445–448.
- [21] F.J. Hurst, W.D. Arnold, Uranium control in phosphogypsum, in: Proceedings of the International Symposium of Phosphogypsum, Lake Buena Vista, FL, 1980, pp. 367–382, FIPR Pub. No. 01-001-017.
- [22] P.M. Rutherford, M.J. Dudas, J.M. Arocena, Radioactivity and elemental composition of phosphogypsum produced from three phosphate rock sources, Waste Management & Research 13 (1995) 407–423.
- [23] M.B. Rajković, K. Karljiković-Rajić, G.T. Vladjisavlević, I.S. Ćirić, Measurements of ionizing radiation, Investigation of Radionuclides in Phosphogypsum. Measurement Techniques (1999) 42.
- [24] F. Burriel Martí, F. Lucena Conde, S. Arribas Jimeno, J. Hernández Méndez, Química Analítica Cualitativa, Editorial Thomson, 1985.
- [25] M. Garcia-León, A. Martínez-Aguirre, R. Periáñez, J.P. Bolívar, R. Garcia-Tenorio, Levels and behaviour of natural radioactivity in the vicinity of phosphate fertilizer plants, Journal of Radioanalytical and Nuclear Chemistry 197 (1995) 173–184.
- [26] C.H.R. Saueia, B.P. Mazzilli, Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil, Journal of Environmental Radioactivity 89 (2006) 229–239.
- [27] P.M. Rutherford, M.J. Dudas, J.M. Arocena, Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product, The Science of the Total Environment 180 (1996) 201–209.
- [28] W.C. Burnett, A.W. Elzerman, Nuclide migration and the environmental radiochemistry of Florida phosphogypsum, Journal of Environmental Radioactivity 54 (2001) 27–51.
- [29] E. Costa-Garangou, Processos de sedimentació i distribució de radioactivitat natural i artificial em sistemes aquàtics contientals de Catalunya (embassaments de Flix i tram català del riu Ebre, Camarasa i Ilacs pirinencs), PhD thesis, Universitat Autònoma de Barcelona, Spain, 2004.
- [30] S.B. Upchurch, C.R. Oural, D.W. Foss, H.R. Brooker, Radiochemistry of Uranium-Series Isotopes in Ground Water, Bartow, FL, USA, Florida Institute of Phosphate Research, 1991, Publication No. 05-022-092.
- [31] W.C. Burnett, M.K. Schultz, C.D. Hull, Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate, Journal of Environmental Radioactivity 32 (1996) 33–51.
- [32] H. Beddow, S. Black, D. Read, Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant, Journal of Environmental Radioactivity 86 (2006) 289–312.
- [33] A.K. Sam, E. Holm, The natural radioactivity in phosphate deposits from Sudan, The Science of the Total Environment 162 (1995) 173–178.
- [34] A.J.K. Santos, B.P. Mazzilli, D.I.T. Fávaro, P.S.C. Silva, Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods, Journal of Environmental Radioactivity 87 (2006) 52–61.
- [35] R. Pérez-López, A.M. Álvarez-Valero, J.M. Nieto, Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes, Journal of Hazardous Materials 148 (2007) 645–750.
- [36] H. El-Shall, E.S.A. Abdel-Aal, Decreasing iron content in wet-process phosphoric acid, Florida Institute of Phosphate Research, 2001, Publication No. 01-154-171.
- [37] Real Decreto 465/2003, Reglamento sobre las sustancias indeseables en la alimentación animal, BOE núm 102, 2003.

- [38] Council Directive 29/96 EURATOM of 13 May 1996, laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation.
- [39] JECFA Joint FAO/WHO expert committee on food additives, Limit test for heavy metals in food additive specifications, Explanatory Note, FAO Joint Secretariat, 2002.
- [40] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and Effects of Ionizing Radiation, United Nations, New York, 2000.
- [41] P. Linsalata, Uranium and thorium decay series radionuclides in human and animal foodchains—a review, Journal of Environmental Quality 23 (1994) 633–642.
- [42] International Commission of Radiation Protection (ICRP), Recommendations of the International Commission of Radiological Protection, 2000.
- [43] ENCAT, Enquesta sobre l'estat nutricional de la població catalana i avaluació dels hàbits alimentaris 2002–2003, Direcció General de Salut Publica. Departament de Salut, Generalitat de Catalunya, 2003.
- [44] Real Decreto 783/2001, Reglamento sobre protección sanitaria contra radiaciones ionizantes, BOE núm 178, 2001.